	MMenu

1Add

 1Remove

 2Set

 2Destroy

 2Show

 2Hide

 3GetPosition

 3About

 3Notes

	Homepage
Command List

MMenu is the replacement for the standard AutoHotKey Menu command. Among other options, it alows menu items to have icons, and solves limitation of standard menus about item identification – besides title, which is nonreliable way to identify items, MMenu gives you an option to identify menu items by ID or position. Mmenu gives you full control over the menu you created, even while it is displayed.
To use this extension simply include MMenu.ahk in your script via #include directive. MMenu.ahk is selfcontained, which means that it will not interact with your script in any way.

Menu_Create([options])
Creates new menu and sets its options. It returns menu handle that is used in other menu functions.
Options:

s<size>
- size of the icons in this menu, default = 32

o<num>
- number of pixels to skip between icon and the text, default = 0

c<color>
- background color of the menu, in hexademical format, omit 0x

t<color>
- default text color

h<height>
- maximum height of the menu (does not work with b option for menu items ,see below)

Examples:
 myMenu := Menu_Create()

;create with default options
 myMenu := Menu_Create("S64 O20")
;set icon size to 64 and offset to 20

 myMenu := Menu_Create("C0 TFFFFFF")
;set background color to black and text color to white

Add
Menu_Add (menu, [title, icon, item, options])
Adds a new menu item into the specified menu.
Parameters:
 menu
- menu handle returned by Create function
 title
- optional title of the menu item
 icon
- optional path to the icon for the item; if you set the number, it will be seen as the icon handle.

 You can use 32x32 icons from resources if you specify :idx after icon path (shell32.dll:4)
 item
- one of the 3 methods to identify menu item (see item identification bellow)

 if number, position for the new item, default = 0 means that item will be appended;

 if name, new item will be inserted before item referenced by that name. See item identification and

 i option.
 options
- options for the menu item, see below

Item identification:
There are 3 methods to identify the item – by ID, by 1-based position and by title. You can use anything that is more appropriate in your scripting environment. All of MMenu functions dealing with items have item parameter that you use to point on specific menu item.
If you set item to be positive number, it will be seen as a position. If you pass string instead of number, it will be seen as as item ID. Item ID is any vaild Autohotkey name that you associate with item when you add it to the menu. If you set the ID to the already existing, you will remove ID of the item previously associated with it. Item ID is unique acros all menus that you create.
If item ends with A_SPACE, it will be seen as items title without ending space (the reason for this is that valid item ID’s can not have space). As you can have more items with the same title, this will return the one with lowest position in the menu.

Some examples

 1

 - identifies the item at position 1

"myItem"
 - identifies the item with ID=myItem

"myItem " - identifies the item with title=myItem

Options:
 i<num>
- menu item ID specified by the syntax of the Autohotkey variable name.
 s
- item is separator; omiting all optional parameters has the same effect
 m<handle>
- item is submenu and will open the menu with given handle
 g
- item is disabled (grayed)

 c
- item is checked
 b [|]
- horizontaly break menu at this item’s position; to draw a line between the break item and next menu part, set b|

d
- use bold fonts for the item
 t
- text color to use for the item, otherwise, use default text color specified with Create’s T parameter

Examples:
 Menu_Add(myMenu, "title 1") ;append item, set the title
 Menu_Add(myMenu, "title 2", "icons\item.ico") ;append item, set the title and icon
 Menu_Add(myMenu, "title 3", "", 3) ;add item without icon on third position
 Menu_Add(myMenu, "title 4", "", , "imyItem c") ;append item with ID=myItem, set its title and check it

 Menu_Add(myMenu, "xxxxxxxx", "", "myItem") ;add item without icon before item with ID=myItem
 Menu_Add(myMenu)
 ;append separator

 mySubMenu := Menu_Create()
 Menu_Add(myMenu, "My Submenu", "icons\submenu.ico", 2, "M" mySubMenu) ;add submenu on second position

Remove
Menu_Remove(menu, item)
Removes the item from the given menu and if item opens the submenu, deattaches submenu. If you specify item by title, the item with the lowest position with that title will be removed.
 menu - menu that holds the item to be removed
 item - one of the 3 methods to identify the item
Examples:
Menu_Remove(myMenu, 3) ;item is specified by position (remove third item in the menu)
Menu_Remove(myMenu, "myItem") ;item is specified by ID (remove item with ID=myItem)
Menu_Remove(myMenu, "kewl item ") ;item is specified by title (remove first item with that tile)

Note: If you set item’s title to be the number and later you want to remove that item using its title as identification, its title will be seen as an position as it holds the number and wrong item will be removed (or nothing at all, depending on number). To prevent this, add space at the end of the number:

Menu_Remove(main, "1")

 ;remove the item with position=1

Menu_Remove(main, "1 ")

 ;remove the item with title=1

Set
Menu_Set(menu, item, title, icon, options)

Set item’s title, icon and options on already crated items.

menu
- handle of the menu containing the item
item

- item identifier, the same rules as in Remove function (ID, position or title)
title, icon, options
- the same as in Add function

If you want to remove title or icon use A_SPACE instead of empty string. Use the empty string to leave the option untouched.
To unset the flag option, use – in front of it (-c –b –m -g). d option can not be unset.
Examples:
Menu_Set(myMenu, 1,"new title","","i33")
 ;change the title and ID of first item
Menu_Set(myMenu,"new title ","",A_SPACE ,"c")
 ;check the first item with title"new title", and remove icon
Menu_Set(myMenu, "i101","","disabled.ico","g -c") ;gray and uncheck item with ID=i101 and change its icon

Destroy
Menu_Destroy(menu)
Destroy the menu and its submenus. Submenus are destroyed recursively.
If you don’t want to destroy submenus first deattach them with Remove function or use Set with an –m option.

Show
MMenu_Show(pMenu, pX, pY, pOnClick, pHandlers="")

Show the menu on screen position X, Y. You can not call Show function while it is already running. This is operating system, restriction.

pOnClick
- This is the user subroutine that will be called when user choose an item.

 M_MENU, M_TITLE, M_ID will contain the info about that item that was clicked.

pHandlers
- This is string containing optional handlers. You can enable following:

S
 – This notificiation is received when user selects the menu item. Sets M_SMENU, M_STITLE, M_SID

I
 – The menu is going to be shown. (initialise). Sets M_MENU

U
 – The menu is going to be closed (uninitialise). Sets M_MENU

R
 – The menu item was right clicked. Sets M_MENU, M_TITLE, M_ID

M
 – The menu item was middle clicked. Sets M_MENU, M_TITLE, M_ID

C
 – The menu has received character input. Sets M_CMENU, M_CHAR

 It Doesn’t report ampersend keys, like t in i&tem as that one will select item or open submenu.

For instance, to show the tooltip for the item that is currently selected you can do this:

MMenu_Show(1, X, Y, "OnClick", "SOnSelect UOnUninit")

OnSelect:

MMenu_GetPosition(M_SMENU, X, Y) ;get the position of the currently open menu

msg := aMyTooltips%M_SID%

 ;M_SID is the item id
Tooltip %msg%, % X + 5, % Y – 30
;and display tooltip above it
return
OnUninit:

Tooltip ;close the tooltip when the (sub)menu closes
return
Example:
myMenu := MMenu_Create(), mySubMenu := MMenu_Create()

s = %A_WinDir%\System32\Shell32.dll

MMenu_Add(myMenu,"CD-ROM",

s ":" 190, 0, "iv101")

MMenu_Add(myMenu,"Recycle Bin",

s ":" 145, 0, "iv102 c")

MMenu_Add(myMenu)

MMenu_Add(myMenu,"Drives",

s ":" 3, 0, "iv103 m" . mySubMenu)

MMenu_Add(mySubMenu,"c:\",

s ":"8)

MMenu_Add(mySubMenu,"d:\",

s ":"8)

MMenu_Add(mySubMenu,"network",

s ":" 9, 0, "g")

MouseGetPos, x, y

MMenu_Show(myMenu, x, y, "OnItemClick")

Return

OnItemClick:

 s :="myMenu"

 If (M_MENU = mySubMenu)

 s :="mySubMenu"

 MsgBox, Menu: %s%`nItem: %M_TITLE% (ID=%M_ID%)

Return

#include MMenu.ahk

Hide
Menu_Hide()
Closes the currently opened menu. For example, to show the context menu for the menu item when it is right clicked you can set up things like this:

contextMenu := MMenu_Create()

mainMenu := MMenu_Create()
:= te(uhow(contextMenuto close (show function to return) when right clicked you set up things like this;

...

Mmenu_Show(mainMenu, 0, 0, “OnMenuClick, “RonRightClick”)

...

 OnRightClick:

MMenu_Hide()

SetTimer, LaunchContextMenu, 50 ;allow mmenu to close (show function to return)

Return

LaunchContextMenu:

SetTimer, LaunchContextMenu, off

MouseGetPos, X, Y

MMenu_Show(contextMenu, X, Y, "OnContextMenuClick")

return

GetPosition
MMenu_GetPosition(pMenu, ByRef X, ByRef Y, selection=false)
Returns screen position of the currently visible (sub)menu or its selected item if selection is set to true.
About
Menu_About()
Displays the message containing version and other information.

Notes
MMenu is open source project and can be used freely. However, if you use MMenu, provide appropriate credits in your documentation.

One of the ways is to put the button in your about window that will launch About function.

Feel free to send me comments and bug reports .

Created by Miodrag Milic
e-mail: miodrag.milic@gmail.com

Thank you:

All FM3 testers, that tested Mmenu while testing Favmenu 3
 Thalon, for testing

Chris, for creating AutoHotKey

... and to Autohotkey community

Homepage | Command List
